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1 Topics

• Szemerédi’s Regularity Lemma

• Testing the property of triangle-freeness on dense graphs.

2 Triangle Counting in a Random Tripartite Graph

Consider a random tripartite graph with “density” η. More precisely, let G = (V,E) be a graph with
vertex partitions A, B and C. Between each pair of vertices from different partitions, there is an edge
between the vertices with probability η (independently). We shall count the number of triangles in this
random tripartite graph.

A

B

C

Figure 1: a tripartite graph with vertex partitions A, B and C

For u ∈ A, v ∈ B, and w ∈ C, define the indicator variable

σu,v,w =

{
1 if (u, v), (u,w), (v, w) ∈ E
0 otherwise

It follows that E[σu,v,w] = Pr[u, v, w forms a triangle] = η3. Therefore,

E[number of triangles] = E[
∑
u∈A
v∈B
w∈C

σu,v,w] =
∑
u∈A
v∈B
w∈C

E[σu,v,w] = η3 · |A||B||C|

3 Triangle Counting in a Regular Dense Graph

Here, we achieve a similar bound to above without requiring the graph to be random. The graph has a
more relaxed assumption based on density and regularity.

Definition 1 (Density and Regularity) For A,B ∈ V such that A ∩ B = ∅ and |A|, |B| > 1, let

e(A,B) denote the number of edges between A and B, and let d(A,B) = e(A,B)
|A||B| be the density.

(A,B) is γ-regular if it has the following property: for all A′ ⊆ A and B′ ⊆ B, if |A′| ≥ γ|A| and
|B′| ≥ γ|B|, then |d(A′, B′)− d(A,B)| < γ.
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Figure 2: Density d(A,B) and d(A′, B′) should not differ by much.

Less formally, for large-enough subsets A′ ⊆ A and B′ ⊆ B, the density between A′ and B′ should be
close (within γ) to the density between A and B.

Lemma 2 (Komlós-Simonovits [2]) For all density η > 0, there exists a regularity parameter γ and
number of triangles δ such that if A,B,C are disjoint subsets of V , each pair δ-regular with density
greater than η, then G has at least δ · |A||B||C| distinct triangles with vertices from each of A, B and C.

Both γ and δ are parameters of η only. For triangle counting in particular, we can choose parameters

γ = γ4(η) = η
2 and δ = δ4(η) = (1− η)− η3

8 . Note that if η < 1
2 , then δ ≥ η3

16 . Therefore, for η < 1
2 the

bound is within a factor of 16 of the random graph.
Proof (Alon, Fischer, Krivelevich, Szegedy [1]) Let A∗ be a set of vertices in A with a lot of neighbors
in B and C. More precisely, each vertex in A∗ has at least (η−γ)|B| neighbors in B and at least (η−γ)|C|
neighbors in C.

Claim 3 |A∗| ≥ (1− 2γ)|A|

Proof of Claim Let A′ be the “bad” nodes of A with respect to B, i.e. they have fewer than (η−γ)|B|
neighbors in B. Likewise, Let A′′ be the “bad” nodes of A with respect to C, i.e. they have fewer than
(η − γ)|C| neighbors in C.

By definition, A∗ = A \ (A′ ∪ A′′). We would like to show that A′ and A′′ cannot be too big. That
is, we would like |A′| ≤ γ|A| and |A′′| ≤ γ|A|, which would imply that |A∗| ≥ |A| − 2γ|A| = (1− 2γ)|A|.

To show that |A′| ≤ γ|A|, we assume to the contrary that |A′| > γ|A|. Consider (A′, B). Because of
γ-regularity of (A,B), d(A′, B) ≥ η − γ. However, because each vertex in A′ has fewer than (η − γ)|B|
neighbors, d(A′, B) < |A′| · (η−γ)|B||A|·|B| ≤ η − γ, a contradiction. The same proof holds for A′′.
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Figure 3: Bu and Cu
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For u ∈ A∗, define Bu to be neighbors on u in B, and define Cu to be neighbors on u in C. Note
that

∑
u(number of edges between Bu and Cu) gives a lower bound on the number of distinct triangles.

Also, |Bu| ≥ (η − γ)|B| and |Cu| ≥ (η − γ)|C| by the definition of A∗.
Since γ is chosen as η

2 , η − γ = γ. Therefore, |Bu| ≥ γ|B| and |Cu| ≥ γ|C|. Because (B,C) is
γ-regular with density at least η,

d(B,C) ≥ η
d(Bu, Cu) ≥ η − γ
e(Bu, Cu) ≥ (η − γ) · |Bu||Cu|
e(Bu, Cu) ≥ (η − γ)3 · |B||C|

Thus, (η − γ)3 · |B||C| is the lower bound on the number of triangles with u ∈ A∗. Therefore, the total
number of triangles in the graph can be lower-bounded by |A∗| · (η − γ)3 · |B||C| = (1 − η)(η − γ)3 ·
|A||B||C| = (1− η)η

3

8 · |A||B||C|.

4 Szemerédi’s Regularity Lemma

This lemma was first developed to prove properties of integer sets without arithmetic progressions [3].
The idea of the lemma is that every graph “large enough” can be “approximated” by a constant number
of sets of random graphs.

Consider graph G = (V,E) with |V | = n, where V is partitioned into k sets of almost equal size
(differing by at most one). The edges internal to a partition is not important. Looking at edges across
partitions, each pair of partitions is somewhat similar to a random bipartite graph. Partitioning is trivial
for k = 1, where all edges become internal edges, and for k = n, where each vertex has its own partition.

Figure 4: a graph divided into five partitions of equal size

Lemma 4 (Szemerédi’s Regularity Lemma [4]) For all m and ε > 0, there exists T = T (m, ε)
such that given G = (V,E) where |V | > T and an equipartition A of V into m sets, there exists an
equipartition B into k sets which refines A such that m ≤ k ≤ T and at most ε

(
k
2

)
set pairs are not

ε-regular.

T (m, ε) is actually quite big.

T (m, ε) ≈ 22
2
. .
.
2

where there are 1
εc levels of exponents.
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Proof Idea The following is a very rough idea of the actual proof. Let

ind(V1, . . . , Vk) =
1

k2

k∑
i=1

k∑
j=i+1

d2(Vi, Vj) ≤
1

2

If a partition violates the property, we can refine into a new parition V ′1 , . . . , V
′
k′ such that ind(V ′1 , . . . , V

′
k′)

grows significantly, by approximately εc. We achieve a good partition after 1
εc refinements.

5 Testing Triangle-Freeness of a Dense Graph

This is an application of Szemerédi’s Regularity Lemma.
Given graph G in the adjacency matrix format, we would like a one-sided-error randomized algorithm

that determines if G is triangle-free. In particular, if G is triangle-free, it should always output pass.
If G is ε-far from being triangle-free, i.e. at least εn2 edges must be removed from G for it to become
triangle-free, it should output fail with probability at least 2

3 .
This can be achieved in O(n3) running time using naive matrix multiplication, or O(nω) with ω < 3

using smarter matrix multiplication. However, this can actually be achieved in O(1), or more accurately

O(22
2
. .
.
2

) (with 1
εc levels of exponents)

The following simple algorithm actually gives the desired bound.

1 for O(δ−1) times
2 do pick v1, v2, v3
3 if v1, v2, v3 forms a triangle
4 then output fail and halt
5 output pass

Note that the algorithm always output pass if the graph is triangle-free. However, it is not obvious
that being ε-far from triangle-free implies that there are many triangles, enough for the algorithm to
find at least one. The following theorem shows that this is actually the case.

Theorem 5 For all ε, there exists δ such that if G is a graph with |V | = n and G is ε-far from triangle-
free, then G has at least δ

(
n
3

)
distinct triangles.

The theorem implies that

Pr[the algorithm fails to find a triangle] ≤ (1− δ)c/δ ≤ e−c

which is less then 1
3 for c > ln 3.

Proof Let A be any equipartition of V into 5
ε .

We use the Szemerédi’s Regularity Lemma with ε′ = min
{
ε
5 , γ
4 ( ε

5

)}
to get a refinement such that

5

ε
≤ k ≤ T

(
5

ε
, ε′
)

That is, we use m = 5
ε . Equivalently,

εn

5
≥ n

k
≥ n

T
(
5
ε , ε
′
)

In addition, the refined partitioning has at most ε′
(
k
2

)
set pairs not ε′-regular.

For simplicity, assume that n
k , the number of vertices per partition, is an integer. We define G′ to be

a cleaned-up version of G by doing the following to G:
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• Delete edges internal to any Vi. There are n vertices, each with at most n
k neighbors in the same

partition. Therefore, the number of edges deleted is at most

n · n
k
≤ ε

5
· n2

• Delete edges between non-regular pairs. There are at most ε′
(
k
2

)
pairs not ε′-regular, each with at

most
(
n
k

)2
edges. Therefore, the number of edges deleted is at most

ε′
(
k

2

)(n
k

)2
≤ ε′ · k

2

2
· n

2

k2
≤ ε

10
· n2

• Delete edges between low-density pairs, where density is less than ε
5 . First, note that

∑
low density

pair

(n
k

)2
≤
(
n

2

)

Therefore, the number of edges deleted is at most∑
low density

pair

ε

5

(n
k

)2
≤ ε

5

(
n

2

)
≤ ε

10
· n2

If the partition sizes were not exactly equal, the number of vertices would be more safely bounded by
n
k + 1. Nevertheless, the total number of edges deleted is less then εn2. Because we assumed that G is
ε-far from triangle-free, G′ still contains a traingle. In fact, G′ has a triangle between Vi, Vj and Vk, for
distinct i, j and k, where each pair is ε′-regular with density at least ε

5 .
The idea here is that the existence of one triangle in G′ implies the existence of many more triangles

because of density. From above, there exists distinct i, j and k such that x ∈ Vi, y ∈ Vj and z ∈ Vk
where Vi, Vj and Vk all form pairs of density η ≥ ε

5 and γ′-regular where γ′ ≥ γ4
(
ε
5

)
≥ η

2 ≥
ε
10 .

By the triangle counting lemma, there are at least

δ4
( ε

5

)
· |Vi||Vj ||Vk| ≥

δ4
(
ε
5

)
n3(

T
(
5
ε , ε
′
))3 > δ′

(
n

3

)

triangles in G′, and thus in G, for δ′ =
6δ4( ε5 )

(T( 5
ε ,ε

′))
3 .

6 Other Applications

The technique explained here can be used to test not only for triangles, but also for other constant-
sized subgraphs. In addition, almost as-is, this can be used to test properties such as first-order graph
properties.
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