Lecture 10
Lecturer: Ronitt Rubinfeld
Scribe: Tana Wattanawaroon

1 Topics

- Szemerédi's Regularity Lemma
- Testing the property of triangle-freeness on dense graphs.

2 Triangle Counting in a Random Tripartite Graph

Consider a random tripartite graph with "density" η. More precisely, let $G=(V, E)$ be a graph with vertex partitions A, B and C. Between each pair of vertices from different partitions, there is an edge between the vertices with probability η (independently). We shall count the number of triangles in this random tripartite graph.

Figure 1: a tripartite graph with vertex partitions A, B and C
For $u \in A, v \in B$, and $w \in C$, define the indicator variable

$$
\sigma_{u, v, w}= \begin{cases}1 & \text { if }(u, v),(u, w),(v, w) \in E \\ 0 & \text { otherwise }\end{cases}
$$

It follows that $\mathrm{E}\left[\sigma_{u, v, w}\right]=\operatorname{Pr}[u, v, w$ forms a triangle $]=\eta^{3}$. Therefore,

$$
\mathrm{E}[\text { number of triangles }]=\mathrm{E}\left[\sum_{\substack{u \in A \\ v \in B \\ w \in C}} \sigma_{u, v, w}\right]=\sum_{\substack{u \in A \\ w \in B \\ w \in C}} \mathrm{E}\left[\sigma_{u, v, w}\right]=\eta^{3} \cdot|A||B||C|
$$

3 Triangle Counting in a Regular Dense Graph

Here, we achieve a similar bound to above without requiring the graph to be random. The graph has a more relaxed assumption based on density and regularity.

Definition 1 (Density and Regularity) For $A, B \in V$ such that $A \cap B=\emptyset$ and $|A|,|B|>1$, let $e(A, B)$ denote the number of edges between A and B, and let $d(A, B)=\frac{e(A, B)}{|A| B \mid}$ be the density.
(A, B) is γ-regular if it has the following property: for all $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, if $\left|A^{\prime}\right| \geq \gamma|A|$ and $\left|B^{\prime}\right| \geq \gamma|B|$, then $\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma$.

Figure 2: Density $d(A, B)$ and $d\left(A^{\prime}, B^{\prime}\right)$ should not differ by much.

Less formally, for large-enough subsets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, the density between A^{\prime} and B^{\prime} should be close (within γ) to the density between A and B.

Lemma 2 (Komlós-Simonovits [2]) For all density $\eta>0$, there exists a regularity parameter γ and number of triangles δ such that if A, B, C are disjoint subsets of V, each pair δ-regular with density greater than η, then G has at least $\delta \cdot|A||B \| C|$ distinct triangles with vertices from each of A, B and C.

Both γ and δ are parameters of η only. For triangle counting in particular, we can choose parameters $\gamma=\gamma^{\triangle}(\eta)=\frac{\eta}{2}$ and $\delta=\delta^{\triangle}(\eta)=(1-\eta)-\frac{\eta^{3}}{8}$. Note that if $\eta<\frac{1}{2}$, then $\delta \geq \frac{\eta^{3}}{16}$. Therefore, for $\eta<\frac{1}{2}$ the bound is within a factor of 16 of the random graph.
Proof (Alon, Fischer, Krivelevich, Szegedy [1]) Let A^{*} be a set of vertices in A with a lot of neighbors in B and C. More precisely, each vertex in A^{*} has at least $(\eta-\gamma)|B|$ neighbors in B and at least $(\eta-\gamma)|C|$ neighbors in C.

Claim $3\left|A^{*}\right| \geq(1-2 \gamma)|A|$
Proof of Claim Let A^{\prime} be the "bad" nodes of A with respect to B, i.e. they have fewer than $(\eta-\gamma)|B|$ neighbors in B. Likewise, Let $A^{\prime \prime}$ be the "bad" nodes of A with respect to C, i.e. they have fewer than $(\eta-\gamma)|C|$ neighbors in C.

By definition, $A^{*}=A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$. We would like to show that A^{\prime} and $A^{\prime \prime}$ cannot be too big. That is, we would like $\left|A^{\prime}\right| \leq \gamma|A|$ and $\left|A^{\prime \prime}\right| \leq \gamma|A|$, which would imply that $\left|A^{*}\right| \geq|A|-2 \gamma|A|=(1-2 \gamma)|A|$.

To show that $\left|A^{\prime}\right| \leq \gamma|A|$, we assume to the contrary that $\left|A^{\prime}\right|>\gamma|A|$. Consider $\left(A^{\prime}, B\right)$. Because of γ-regularity of $(A, B), d\left(A^{\prime}, B\right) \geq \eta-\gamma$. However, because each vertex in A^{\prime} has fewer than $(\eta-\gamma)|B|$ neighbors, $d\left(A^{\prime}, B\right)<\left|A^{\prime}\right| \cdot \frac{(\eta-\gamma)|B|}{|A| \cdot|B|} \leq \eta-\gamma$, a contradiction. The same proof holds for $A^{\prime \prime}$.

Figure 3: B_{u} and C_{u}

For $u \in A^{*}$, define B_{u} to be neighbors on u in B, and define C_{u} to be neighbors on u in C. Note that \sum_{u} (number of edges between B_{u} and C_{u}) gives a lower bound on the number of distinct triangles. Also, $\left|B_{u}\right| \geq(\eta-\gamma)|B|$ and $\left|C_{u}\right| \geq(\eta-\gamma)|C|$ by the definition of A^{*}.

Since γ is chosen as $\frac{\eta}{2}, \eta-\gamma=\gamma$. Therefore, $\left|B_{u}\right| \geq \gamma|B|$ and $\left|C_{u}\right| \geq \gamma|C|$. Because (B, C) is γ-regular with density at least η,

$$
\begin{aligned}
d(B, C) & \geq \eta \\
d\left(B_{u}, C_{u}\right) & \geq \eta-\gamma \\
e\left(B_{u}, C_{u}\right) & \geq(\eta-\gamma) \cdot\left|B_{u}\right|\left|C_{u}\right| \\
e\left(B_{u}, C_{u}\right) & \geq(\eta-\gamma)^{3} \cdot|B \| C|
\end{aligned}
$$

Thus, $(\eta-\gamma)^{3} \cdot|B \| C|$ is the lower bound on the number of triangles with $u \in A^{*}$. Therefore, the total number of triangles in the graph can be lower-bounded by $\left|A^{*}\right| \cdot(\eta-\gamma)^{3} \cdot|B||C|=(1-\eta)(\eta-\gamma)^{3}$. $|A||B||C|=(1-\eta) \frac{\eta^{3}}{8} \cdot|A||B||C|$.

4 Szemerédi's Regularity Lemma

This lemma was first developed to prove properties of integer sets without arithmetic progressions [3]. The idea of the lemma is that every graph "large enough" can be "approximated" by a constant number of sets of random graphs.

Consider graph $G=(V, E)$ with $|V|=n$, where V is partitioned into k sets of almost equal size (differing by at most one). The edges internal to a partition is not important. Looking at edges across partitions, each pair of partitions is somewhat similar to a random bipartite graph. Partitioning is trivial for $k=1$, where all edges become internal edges, and for $k=n$, where each vertex has its own partition.

Figure 4: a graph divided into five partitions of equal size

Lemma 4 (Szemerédi's Regularity Lemma [4]) For all m and $\epsilon>0$, there exists $T=T(m, \epsilon)$ such that given $G=(V, E)$ where $|V|>T$ and an equipartition \mathcal{A} of V into m sets, there exists an equipartition \mathcal{B} into k sets which refines \mathcal{A} such that $m \leq k \leq T$ and at most $\epsilon\binom{k}{2}$ set pairs are not ϵ-regular.
$T(m, \epsilon)$ is actually quite big.

$$
T(m, \epsilon) \approx 2^{2^{2}}
$$

where there are $\frac{1}{\epsilon^{c}}$ levels of exponents.

Proof Idea The following is a very rough idea of the actual proof. Let

$$
\operatorname{ind}\left(V_{1}, \ldots, V_{k}\right)=\frac{1}{k^{2}} \sum_{i=1}^{k} \sum_{j=i+1}^{k} d^{2}\left(V_{i}, V_{j}\right) \leq \frac{1}{2}
$$

If a partition violates the property, we can refine into a new parition $V_{1}^{\prime}, \ldots, V_{k_{1}^{\prime}}^{\prime}$ such that $\operatorname{ind}\left(V_{1}^{\prime}, \ldots, V_{k^{\prime}}^{\prime}\right)$ grows significantly, by approximately ϵ^{c}. We achieve a good partition after $\frac{1}{\epsilon^{c}}$ refinements.

5 Testing Triangle-Freeness of a Dense Graph

This is an application of Szemerédi's Regularity Lemma.
Given graph G in the adjacency matrix format, we would like a one-sided-error randomized algorithm that determines if G is triangle-free. In particular, if G is triangle-free, it should always output Pass. If G is ϵ-far from being triangle-free, i.e. at least ϵn^{2} edges must be removed from G for it to become triangle-free, it should output FAIL with probability at least $\frac{2}{3}$.

This can be achieved in $O\left(n^{3}\right)$ running time using naive matrix multiplication, or $O\left(n^{\omega}\right)$ with $\omega<3$ using smarter matrix multiplication. However, this can actually be achieved in $O(1)$, or more accurately

$$
O\left(2^{2^{2}} .^{2}\right) \text { (with } \frac{1}{\epsilon^{c}} \text { levels of exponents) }
$$

The following simple algorithm actually gives the desired bound.

```
for }O(\mp@subsup{\delta}{}{-1})\mathrm{ times
    do pick }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{
        if }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}\mathrm{ forms a triangle
            then output FAIL and halt
output PASS
```

Note that the algorithm always output PASS if the graph is triangle-free. However, it is not obvious that being ϵ-far from triangle-free implies that there are many triangles, enough for the algorithm to find at least one. The following theorem shows that this is actually the case.

Theorem 5 For all ϵ, there exists δ such that if G is a graph with $|V|=n$ and G is ϵ-far from trianglefree, then G has at least $\delta\binom{n}{3}$ distinct triangles.

The theorem implies that

$$
\operatorname{Pr}[\text { the algorithm fails to find a triangle }] \leq(1-\delta)^{c / \delta} \leq e^{-c}
$$

which is less then $\frac{1}{3}$ for $c>\ln 3$.
Proof Let \mathcal{A} be any equipartition of V into $\frac{5}{\epsilon}$.
We use the Szemerédi's Regularity Lemma with $\epsilon^{\prime}=\min \left\{\frac{\epsilon}{5}, \gamma^{\triangle}\left(\frac{\epsilon}{5}\right)\right\}$ to get a refinement such that

$$
\frac{5}{\epsilon} \leq k \leq T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)
$$

That is, we use $m=\frac{5}{\epsilon}$. Equivalently,

$$
\frac{\epsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)}
$$

In addition, the refined partitioning has at most $\epsilon^{\prime}\binom{k}{2}$ set pairs not ϵ^{\prime}-regular.
For simplicity, assume that $\frac{n}{k}$, the number of vertices per partition, is an integer. We define G^{\prime} to be a cleaned-up version of G by doing the following to G :

- Delete edges internal to any V_{i}. There are n vertices, each with at most $\frac{n}{k}$ neighbors in the same partition. Therefore, the number of edges deleted is at most

$$
n \cdot \frac{n}{k} \leq \frac{\epsilon}{5} \cdot n^{2}
$$

- Delete edges between non-regular pairs. There are at most $\epsilon^{\prime}\binom{k}{2}$ pairs not ϵ^{\prime}-regular, each with at most $\left(\frac{n}{k}\right)^{2}$ edges. Therefore, the number of edges deleted is at most

$$
\epsilon^{\prime}\binom{k}{2}\left(\frac{n}{k}\right)^{2} \leq \epsilon^{\prime} \cdot \frac{k^{2}}{2} \cdot \frac{n^{2}}{k^{2}} \leq \frac{\epsilon}{10} \cdot n^{2}
$$

- Delete edges between low-density pairs, where density is less than $\frac{\epsilon}{5}$. First, note that

$$
\sum_{\substack{\text { low density } \\ \text { pair }}}\left(\frac{n}{k}\right)^{2} \leq\binom{ n}{2}
$$

Therefore, the number of edges deleted is at most

$$
\sum_{\substack{\text { low density } \\ \text { pair }}} \frac{\epsilon}{5}\left(\frac{n}{k}\right)^{2} \leq \frac{\epsilon}{5}\binom{n}{2} \leq \frac{\epsilon}{10} \cdot n^{2}
$$

If the partition sizes were not exactly equal, the number of vertices would be more safely bounded by $\frac{n}{k}+1$. Nevertheless, the total number of edges deleted is less then ϵn^{2}. Because we assumed that G is ϵ-far from triangle-free, G^{\prime} still contains a traingle. In fact, G^{\prime} has a triangle between V_{i}, V_{j} and V_{k}, for distinct i, j and k, where each pair is ϵ^{\prime}-regular with density at least $\frac{\epsilon}{5}$.

The idea here is that the existence of one triangle in G^{\prime} implies the existence of many more triangles because of density. From above, there exists distinct i, j and k such that $x \in V_{i}, y \in V_{j}$ and $z \in V_{k}$ where V_{i}, V_{j} and V_{k} all form pairs of density $\eta \geq \frac{\epsilon}{5}$ and γ^{\prime}-regular where $\gamma^{\prime} \geq \gamma^{\triangle}\left(\frac{\epsilon}{5}\right) \geq \frac{\eta}{2} \geq \frac{\epsilon}{10}$.

By the triangle counting lemma, there are at least

$$
\delta^{\triangle}\left(\frac{\epsilon}{5}\right) \cdot\left|V_{i}\right|\left|V_{j}\right|\left|V_{k}\right| \geq \frac{\delta^{\triangle}\left(\frac{\epsilon}{5}\right) n^{3}}{\left(T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)\right)^{3}}>\delta^{\prime}\binom{n}{3}
$$

triangles in G^{\prime}, and thus in G, for $\delta^{\prime}=\frac{6 \delta^{\triangle}\left(\frac{\epsilon}{5}\right)}{\left(T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)\right)^{3}}$.

6 Other Applications

The technique explained here can be used to test not only for triangles, but also for other constantsized subgraphs. In addition, almost as-is, this can be used to test properties such as first-order graph properties.

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Combinatorica, 20(4):451-476, 2000.
[2] J. Komls and M. Simonovits. Szemerdi's regularity lemma and its applications in graph theory, 1996.
[3] E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199-245, 1975. Collection of articles in memory of Juriĭ Vladimirovič Linnik.
[4] E. Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 399-401. CNRS, Paris, 1978.

