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1 Topics
e Szemerédi’s Regularity Lemma

e Testing the property of triangle-freeness on dense graphs.

2 Triangle Counting in a Random Tripartite Graph

Consider a random tripartite graph with “density” 7. More precisely, let G = (V, E) be a graph with
vertex partitions A, B and C. Between each pair of vertices from different partitions, there is an edge
between the vertices with probability n (independently). We shall count the number of triangles in this
random tripartite graph.

Figure 1: a tripartite graph with vertex partitions A, B and C
For u € A, v € B, and w € C, define the indicator variable

1 (u,0), (u,w), (v, w) € B
Ou,v,w =
Y 0 otherwise

It follows that E[oy, ] = Pru,v,w forms a triangle] = n3. Therefore,

E[number of triangles] = E[ E Ouww| = g Elowv,w] = 773 -|A||B]|C]
u€A u€eA
vEB vEB
weC weC

3 Triangle Counting in a Regular Dense Graph

Here, we achieve a similar bound to above without requiring the graph to be random. The graph has a
more relaxed assumption based on density and regularity.

Definition 1 (Density and Regularity) For A,B € V such that AN B = () and |A|,|B|] > 1, let
e(A, B) denote the number of edges between A and B, and let d(A, B) = el(Aflx\’gl) be the density.
(A, B) is y-regular if it has the following property: for all A' C A and B’ C B, if |A'| > ~|A| and

|B’| > ~|B|, then |d(A’, B") — d(A, B)| < .




Figure 2: Density d(A, B) and d(A’, B) should not differ by much.

Less formally, for large-enough subsets A’ C A and B’ C B, the density between A’ and B’ should be
close (within «) to the density between A and B.

Lemma 2 (Komlés-Simonovits [2]) For all density n > 0, there exists a reqularity parameter v and
number of triangles § such that if A, B,C are disjoint subsets of V', each pair d-reqular with density
greater than n, then G has at least 6 - |A||B||C| distinct triangles with vertices from each of A, B and C.

Both v and ¢ are parameters of 7 only. For triangle counting in particular, we can choose parameters
y=792n)=%and 6 =6%(n) = (1—n)— "Tj. Note that if n < %, then § > ’17—2. Therefore, for n < 3 the
bound is within a factor of 16 of the random graph.

Proof (Alon, Fischer, Krivelevich, Szegedy [1]) Let A* be a set of vertices in A with a lot of neighbors
in B and C'. More precisely, each vertex in A* has at least (n—-)|B| neighbors in B and at least (n—)|C]|
neighbors in C.

Claim 3 [A*| > (1 - 27)|4]

Proof of Claim Let A’ be the “bad” nodes of A with respect to B, i.e. they have fewer than (n—~)|B|
neighbors in B. Likewise, Let A” be the “bad” nodes of A with respect to C, i.e. they have fewer than
(n —v)|C| neighbors in C.
By definition, A* = A\ (A’ U A”). We would like to show that A’ and A” cannot be too big. That
is, we would like |A’| < |A| and |A”| < v|A|, which would imply that |A*| > |A| — 2v]|A4] = (1 —27)|A4].
To show that |A’| < 7|A|, we assume to the contrary that |A’| > v|A|. Consider (A’, B). Because of
~-regularity of (4, B), d(A’, B) > n — ~. However, because each vertex in A’ has fewer than (n — v)|B|

neighbors, d(A4’, B) < |A’| - (Ylgmﬁl < 1 — 7, a contradiction. The same proof holds for A”. B

Figure 3: B, and C,



For u € A*, define B,, to be neighbors on u in B, and define C,, to be neighbors on u in C'. Note
that ) (number of edges between B, and C,,) gives a lower bound on the number of distinct triangles.
Also, |By| > (n —7)|B| and |Cy| > (n —v)|C| by the definition of A*.

Since «y is chosen as 3, n — v = 7. Therefore, |B,| > v|B| and |Cy| > 7|C|. Because (B,C) is
v-regular with density at least 7,

d(B,C) >n
d(By,Cy) > n—1
e(Bu, Cu) > (=) - |Bul|Cul
e(Bu, Cu) > (n —7)* - | B||C]

Thus, (n — )3 - |B||C] is the lower bound on the number of triangles with u € A*. Therefore, the total
number of triangles in the graph can be lower-bounded by |A*| - (n — )3 - |B||C| = (1 —n)(n — 7)® -

[AIIBIIC = (1 —n)% - |AllB[|C]|. W

4 Szemerédi’s Regularity Lemma

This lemma was first developed to prove properties of integer sets without arithmetic progressions [3].
The idea of the lemma is that every graph “large enough” can be “approximated” by a constant number
of sets of random graphs.

Consider graph G = (V, E) with |V| = n, where V is partitioned into k sets of almost equal size
(differing by at most one). The edges internal to a partition is not important. Looking at edges across
partitions, each pair of partitions is somewhat similar to a random bipartite graph. Partitioning is trivial
for kK = 1, where all edges become internal edges, and for k = n, where each vertex has its own partition.

Figure 4: a graph divided into five partitions of equal size

Lemma 4 (Szemerédi’s Regularity Lemma [4]) For all m and € > 0, there exists T = T(m,e€)
such that given G = (V, E) where |V| > T and an equipartition A of V into m sets, there exists an
equipartition B into k sets which refines A such that m < k < T and at most e(g) set pairs are not
e-reqular.

T(m,€) is actually quite big.

L levels of exponents.

€

where there are



Proof Idea  The following is a very rough idea of the actual proof. Let

k k
ind(Vi,..., Vi) %ZZ (Vi, Vj) <

If a partition violates the property, we can refine into a new parition V7, ..., V}/, such that ind(V/,...,V},)
grows significantly, by approximately ¢¢. We achieve a good partition after 6% refinements. W

N =

5 Testing Triangle-Freeness of a Dense Graph

This is an application of Szemerédi’s Regularity Lemma.

Given graph G in the adjacency matrix format, we would like a one-sided-error randomized algorithm
that determines if G is triangle-free. In particular, if G is triangle-free, it should always output PASS.
If G is e-far from being triangle-free, i.e. at least en? edges must be removed from G for it to become
triangle-free, it should output FAIL with probability at least %

This can be achieved in O(n?) running time using naive matrix multiplication, or O(n*) with w < 3
using smarter matrix multiplication. However, this can actually be achieved in O(1), or more accurately

_2
0(2% ) (with L levels of exponents)
The following simple algorithm actually gives the desired bound.

1 for O(671) times

2 do pick vy, v9,v3

3 if vy, v9,v3 forms a triangle
4 then output FAIL and halt
5 output PASS

Note that the algorithm always output PASS if the graph is triangle-free. However, it is not obvious
that being e-far from triangle-free implies that there are many triangles, enough for the algorithm to
find at least one. The following theorem shows that this is actually the case.

Theorem 5 For all €, there exists 6 such that if G is a graph with |V| =n and G is e-far from triangle-
free, then G has at least 6(;’) distinct triangles.

The theorem implies that
Pr[the algorithm fails to find a triangle] < (1 5)6/ < emc

which is less then s for ¢ > In3.
Proof Let A be any equipartition of V into 2 2
We use the Szemerédi’s Regularity Lemma with ¢ = min {g,WA (g)} to get a refinement such that

That is, we use m = 2. Equivalently,
5
T(2.¢)
In addition, the refined partitioning has at most ¢’ (’2‘”') set pairs not €-regular.

For simplicity, assume that %, the number of vertices per partition, is an integer. We define G’ to be
a cleaned-up version of G by doing the following to G:



e Delete edges internal to any V;. There are n vertices, each with at most 7 neighbors in the same
partition. Therefore, the number of edges deleted is at most
. n2

n-—<

> 3
ot

e Delete edges between non-regular pairs. There are at most ¢’ (g) pairs not €’-regular, each with at

most (%)2 edges. Therefore, the number of edges deleted is at most

Ak (n>2< , k2 n2< € 4
J— ¢ —_— . — 7'“
Ao \%) =" 2 12 =10

e Delete edges between low-density pairs, where density is less than £. First, note that

g.
n\ 2 n
> (7)=
\k 2
low density

pair

Therefore, the number of edges deleted is at most

e /m\2 e(n € 4
) <
5 \k 5\ 2 10
lowdqnsmy
pair

If the partition sizes were not exactly equal, the number of vertices would be more safely bounded by
% + L. Nevertheless, the total number of edges deleted is less then en?. Because we assumed that G is
e-far from triangle-free, G’ still contains a traingle. In fact, G’ has a triangle between V;, V; and Vj, for
distinct 4, j and k, where each pair is €-regular with density at least £

The idea here is that the existence of one triangle in G’ implies the existence of many more triangles
because of density. From above, there exists distinct ¢, j and k such that x € V;, y € V; and z € V},
where V;, V; and V}, all form pairs of density 7 > £ and v'-regular where v" > o (g) >4 >5.

By the triangle counting lemma, there are at least

T Y ) L
5 (5)-|M||v]|vk|z(T(576 5> 0

65 ()

(7(2e)”

triangles in G’, and thus in G, for §' =

6 Other Applications

The technique explained here can be used to test not only for triangles, but also for other constant-
sized subgraphs. In addition, almost as-is, this can be used to test properties such as first-order graph
properties.
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